# TIN MINERALIZATION AT THE WON PROSPECT, WEST-CENTRAL ALASKA

By Roger E. Burleigh

\* OFR 85-92

TN 23 .U44 92-85 c.3

## UNITED STATES DEPARTMENT OF THE INTERIOR

Manuel J. Lujan Jr., Secretary

**BUREAU OF MINES** 

T S Ary, Director



# CONTENTS

|                                                                      | rage                    |
|----------------------------------------------------------------------|-------------------------|
| Abstract                                                             |                         |
| Introduction                                                         | 2                       |
| Location                                                             | 2                       |
| History                                                              | 2                       |
| Physiography                                                         |                         |
| Geology                                                              |                         |
| Sedimentary rocks and hornfels                                       |                         |
| Igneous rocks                                                        |                         |
| Aeromagnetic survey interpretation                                   |                         |
| Vein deposits                                                        |                         |
| Analytical methods                                                   |                         |
| Stockwork zone                                                       |                         |
| Gemini veins                                                         |                         |
| Tin Ridge veins                                                      |                         |
| Prospect Pit vein                                                    |                         |
| South vein                                                           |                         |
| Standoff Ridge vein                                                  |                         |
| Dog Day vein                                                         |                         |
| Gash vein                                                            |                         |
| Other occurrences                                                    |                         |
| Tin resource estimation                                              | 16                      |
| Conclusions                                                          | 17                      |
| References                                                           | 18                      |
| Appendix - Additional analytical results for igneous and             |                         |
| mineralized samples                                                  | 19                      |
|                                                                      |                         |
|                                                                      |                         |
| ILLUSTRATIONS                                                        |                         |
|                                                                      |                         |
| 1. Location map of the Won, Win, and Cloud prospects and the Mystery |                         |
| and Telida Mountains                                                 |                         |
| 2. Geology and sample location map of the Won prospect               | pocket                  |
| 3. Ribbon quartz stockwork veining with arsenopyrite, tetrahedrite,  | _                       |
| chalcopyrite, sphalerite, and cassiterite                            |                         |
| 4. Detail geologic and sample location map of the Gemini veins       | 9                       |
| 5. Cassiterite-matrix-supported siltstone breccia                    | 10                      |
|                                                                      |                         |
| TABLES                                                               |                         |
| IADELO                                                               |                         |
| 1. Major oxide and trace element analyses for rhyolite and           |                         |
| andesite dikes                                                       | 5                       |
| 2. Analytical results for samples of the Stockwork zone              |                         |
| 3. Analytical results for samples of the Gemini veins                |                         |
| 4. Analytical results for samples of the Tin Ridge veins             |                         |
| 5. Analytical results for samples of the Prospect Pit vein           | $\dots$ $\overline{11}$ |
|                                                                      |                         |

# TABLES, continued

| 6.  | Analytical results for samples of the South vein          | 12 |
|-----|-----------------------------------------------------------|----|
| 7.  | Analytical results for samples of the Standoff Ridge vein | 13 |
| 8.  | Analytical results for samples of the Dog Day vein        | 14 |
| 9.  | Analytical results for samples of the Gash vein           | 14 |
| 10. | Analytical results for samples of other vein occurrences  | 15 |
|     | Data for tin resource estimation calculations             |    |

# ABBREVIATIONS USED IN THIS REPORT

٥ degree ft foot greater than in inch less than <  $\mathbf{m}\mathbf{i}$ mile micrometer μm M million million years before present Ma troy ounces per short ton parts per million oz/st ppm % percent pound lb st short ton

|  | • |  |  |      |
|--|---|--|--|------|
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  |      |
|  |   |  |  | <br> |

# TIN MINERALIZATION AT THE WON PROSPECT, WEST-CENTRAL ALASKA

By Roger E. Burleigh<sup>1</sup>

## **ABSTRACT**

Tin mineralization at the Won prospect was investigated by the Bureau of Mines in July 1989 and June 1990 as part of an ongoing investigation of the tin resource potential in Alaska. The Won prospect is located 40 miles north of McGrath, Alaska. The tin deposits at the Won prospect are associated with several northwest trending, moderately dipping breccia-vein structures developed in tourmaline- and quartz-altered hornfels. Tin occurs in brecciated hornfels with cassiterite matrix, cassiterite druse on fracture surfaces of open spaced, crackle breccia, and as disseminated grains in quartz veins containing minor silver, arsenic, copper, antimony, and zinc mineralization.

Based upon limited sampling, and estimated combined tin resource of approximately 25.3 M lb tin is indicated for two of the principal breccia structures at the Won prospect, the Dog Day and the South veins. Additionally, 7,700 linear feet of tin-mineralized breccia vein structure can be estimated from projections of other individual breccia vein occurrences.

#### INTRODUCTION

The U. S. Bureau of Mines has investigated the tin resource potential of Alaska for several decades. This work has been done because tin is vital to industries in the United States, that the United States relies on foreign countries to supply over 70% of its annual consumption (1)2, and that Alaska is the only portion of the United States that contains world-class tin deposits.

In 1989 and 1990, the Bureau investigated the Won tin prospect in west-central Alaska (fig. 1). The Won prospect is one of several recently discovered tin deposits that are distributed within the upper Kuskokwim River drainage. Another notable tin occurrence is the Win deposit (2). The Cloud prospect, and the Mystery and Telida Mountains areas may also contain significant tin deposits (fig. 1).

This report describes the extent, mineralogy, morphology, distribution, and resource potential of the polymetallic tin-rich breccia veins that comprise the Won prospect.

#### LOCATION

The Won prospect is 40 air miles due north of the village of McGrath (fig. 1) and can be reached only by helicopter. A private landing strip is located at a placer mine on Colorado Creek 12 miles to the northwest. An excellent camp site is in the main north-south drainage which crosses the prospect (fig. 2). It consists of 10 ft by 10 ft plywood tent platforms, a helicopter landing pad, and a flowing creek nearby.

#### **HISTORY**

In 1980 the U.S. Geological Survey (3) identified anomalous levels of tin, tungsten, bismuth, lead, silver and arsenic in stream sediment samples from creeks draining a set of hills in central Alaska. In 1983 exploration for tin-silver mineralization resulted in the discovery of the Storm (Anaconda Minerals Co.) and the Won (Duval Corp.) prospects. The Storm prospect consisted of a group of claims that surrounded Duval's claims.

In 1984, Anaconda Minerals Co. drilled six shallow diamond drill holes on three mineralized structures discovered on their claim block. Anaconda Minerals Co. conveyed their claims to the Cook Inlet Region Inc. (CIRI) in 1985. No work has been done on the claims since 1987.

#### **PHYSIOGRAPHY**

The tin veins occur in a roundish set of hills, which rise up to 2,000 ft above the surrounding terrain. A prominent north-south trending, unnamed creek transects the hills and drains northward into the Susulatna River. Alder and spruce grow densely in the creek bottoms at 1,400-1,700 ft elevation. A thin veneer of tundra intermittently covers talus strewn slopes at higher elevations. The country is open and easy to traverse on foot.

#### **GEOLOGY**

Bedrock geology of the prospect consists of a sequence of clastic marine sedimentary rocks that have been widely metamorphosed to hornfels and tourmalinized and silicified to varying degrees. A few andesitic and rhyolitic dikes cut these units and are also locally altered. Several northeast-trending, tin mineralized, breccia vein structures crosscut the hornfels.

<sup>&</sup>lt;sup>2</sup>Underlined numbers in parentheses refer to references found in the reference section preceding the appendix.

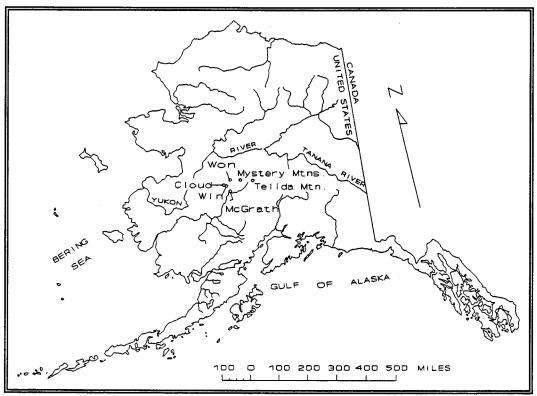



Figure 1. Location map of the Won, Win, and Cloud prospects and the Mystery and Telida Mountains.

## Sedimentary Rocks and Hornfels

Sedimentary rocks at the prospect are part of the Kuskokwim Group of late-Early Cretaceous to Late Cretaceous age (4). They comprise a sequence of mudstone and siltstone, which grade upwards into locally fossiliferous lithic sandstone, siltstone, and fine pebble conglomerate.

The sedimentary rocks strike parallel to the regional northeast trend and dip gently to moderately south (fig. 2). Local deviations from the regional trend occur in the vicinity of vein and breccia structures.

Sedimentary rocks are variably metamorphosed to hornfels and specific metamorphic facies in the hornfels are not defined. The hornfels developed in the lithic sandstones is hard and compact, but grades to less competent sandstone away from the central mass of the hills where the breccia veins are found. Hornfels is widely altered disseminated and veined tourmaline is abundant. Tourmaline lends a purplish brown hue to the siltstone and is generally very fine-grained. Tourmaline alteration occurs as finely dispersed grains and as compact masses giving a variegated appearence to the brecciated hornfels. Near breccia vein structures the hornfels is distinctly gray in color and silicified.

## Igneous Rocks

Igneous rocks include leucocratic rhyolite dikes, transecting the southwest side of the hornfels, and fine-grained andesite dikes, that transect the north and northeast side (fig. 2). Dikes trend approximately 140-150° and are steeply dipping. The dikes are up to 50 ft wide.

Patton (5) states that the andesite dikes are related to widespread, high-potassium, calc-alkaline, volcanic-plutonic activity that occurred throughout the Medfra Quadrangle and elsewhere in central Alaska

between 59 and 71 Ma (6). Similar volcanic-plutonic complexes are found to the southwest of the Medfra Quadrangle into the Sleetmute Quadrangle (4). At other volcanic-plutonic complexes in the region, where dacitic to andesitic dikes are related to stocks, the stocks have whole rock compositions that include monzonite, quartz monzonite, and granodiorite (6).

Although there are no large exposures of plutonic or volcanic rocks near the prospect, the dikes at the Won prospect are chemically similar to dikes which are related to volcanic-plutonic complexes in the region (6). The more mafic dikes range from andesite to rhyodacite in composition and are fine-grained, equigranular, and hypidiomorphic in texture. Potassium feldspar, biotite, hornblende, and plagioclase constitute the major rock-forming minerals. Secondary minerals include quartz, ilmenite, tourmaline, chlorite, and a carbonate of unknown composition. Phenocrysts of zoned plagioclase are sparse. Major oxide and select trace element data for the andesite and rhyolite dikes are presented in table 1.

Rhyolite dikes are less common than andesite dikes. These dikes contain no mafic minerals and are aphanitic in texture. A 10-ft wide outcrop of rhyolite is located at map location 26, figure 2.

Table 1. -- Major oxide and trace element analyses of rhyolite and andesite dikes

| Map<br>Number | Sample<br>Number     | Al 203    | CaO<br>%  | Fe 2 <sup>O</sup><br>3<br>% | FeO<br>%   | K 20<br>%  | LOI<br>% | MgO<br>%   | MinO<br>%  | Na 20<br>% | P2 <sup>O</sup> 5 | sio 2      | TiO 2          | Totals<br>%       |
|---------------|----------------------|-----------|-----------|-----------------------------|------------|------------|----------|------------|------------|------------|-------------------|------------|----------------|-------------------|
| 3             | KS27656              | 18.0      | 1.77      | 3.0                         | 9,9        | 1.27       | 5.98     | 6.67       | 0.51       | 0.84       | 0.29              | 49.1       | 1.6            | 98.93             |
| 4             | KS27657              | 17.7      | 3.94      | 2.5                         | 8.82       | 0.32       | 4.88     | 6.64       | 0.22       | 1.27       | 0.25              | 49.9       | 1.65           | 98.09             |
| 11            | KS23188              | 16.1      | 6.0       | 1.1                         | 4.47       | 1.94       | 4.52     | 2.96       | 0.16       | 3.40       | 0.28              | 56.5       | 0.98           | 98.41             |
| 15            | KS27506              | 15.1      | 2.36      | 4.14                        | 5.9        | 2.25       | 4.85     | 5.95       | 0.14       | 3.16       | 0.22              | 51.7       | 1.64           | 97.83             |
| 21            | KS27503              | 15.0      | 3.28      | 4.32                        | 5.56       | 1.97       | 3.49     | 5.47       | 0.18       | 3.66       | 0.12              | 52.5       | 1.77           | 97.32             |
| 26            | KS27521              | 13.1      | 4.72      | 2.62                        | 5.87       | 1.83       | 3.34     | 6.11       | 0.15       | 1.98       | 0.13              | 55.1       | 1.18           | 97.83             |
| 48            | KS27510              | . 14.8    | 0.04      | 0.53                        | 0.06       | 4.27       | 1.82     | 0.05       | 0.02       | 2.29       | < 0.01            | 75.5       | 0.02           | 97.70             |
| 56            | KS27667              | 16.4      | 0.48      | 1.32                        | 2.05       | 3.15       | 3.19     | 1.95       | 90.0       | 3.34       | 0.32              | 65.2       | 1.08           | 96.24             |
|               |                      |           |           |                             |            |            |          |            |            |            |                   |            |                |                   |
| Map<br>Number | Sample<br>Number     | Ba<br>ppm | Nb<br>ppm | Rb<br>ppm                   | Sr<br>ppm  | Zr<br>ppm  | Y<br>ppm | Sn<br>ppm  | Ce<br>ppm  | Ta<br>ppm  |                   | Rock       | Туре           |                   |
| 3             | KS27656              | 510       | 24        | <b>5</b> 2                  | 176        | 122        | 29       | 370        | ٠          |            |                   | And        | esite          |                   |
| 4             | KS27657              | 140       | 34        | 14                          | 214        | 137        | 35       | 700        | •          |            |                   | And        | esite          |                   |
|               |                      |           |           |                             |            |            |          |            |            |            | Andesite          |            |                |                   |
| 11            | K\$23188             | 1200      | 14        | 49                          | 420        | 145        | 16       | <5         | < 29       | 1          |                   | And        | esite          |                   |
| 11            | K\$23188<br>K\$27506 | 1200      | 14        | 49<br>140                   | 420<br>240 | 145<br>145 | 16<br>19 | <5<br>140  | < 29<br>51 | 1<br><1    |                   | And<br>And |                |                   |
|               |                      |           |           |                             |            |            |          |            |            |            |                   |            | esite          | · · · <del></del> |
| 15            | KS27506              | 1300      | 13        | 140                         | 240        | 145        | 19       | 140        | 51         | <1         |                   | And        | esite<br>esite |                   |
| 15<br>21      | KS27506<br>KS27503   | 1300      | 13        | 140                         | 240<br>295 | 145<br>160 | 19<br>18 | 140<br>435 | 51<br>50   | <1<br><1   |                   | Ande       | esite<br>esite |                   |

Note: Ba, Nb, Rb, Sr, Zr, Y, Sa, Ce, and Ta analyzed by X-ray fluorescence except where noted. Whole-rock exides analyzed by direct coupled plasma emission after HF-HNO 3 HCIO 4-HCI extraction except for FeO. FeO analyzed by titrametric methods. LOI (loss on ignition) determined by gravimetric methods

Note: Map number refers to map locations on figure 2.

Dikes at the Won prospect all exhibit some degree of alteration. Away from the area of hornfels the andesite dikes exhibit a greater degree of carbonate alteration and contain minor amounts of chalcopyrite and sphalerite (map location 11, fig. 2). A pyrrhotite-chalcopyrite-sphalerite-bearing andesite dike cropping out at map locations 3 and 4 (fig. 2), is enriched in tin, with concentrations of 370 and 700 ppm, respectively.

An andesite dike sampled at map locations 21 and 15 (fig. 2), is substantially altered and highly enriched in copper and tin. These samples respectively contain 1.24 and 2.3% Cu and 140 and 435 ppm Sn. A stockwork quartz-sulfide-cassiterite system parallels and overlaps this dike. The elevated tin and copper content of dikes cutting hornfels is probably related to the tin-mineralizing hydrothermal system that mineralized the breccia vein structures.

Only two rhyolite dikes were sampled (map numbers 48 and 56, table 1). These dikes contain tin concentrations of 39 to 340 ppm Sn respectively.

#### Aeromagnetic Survey Interpretation

An aeromagnetic survey by the USGS, flown in 1978 (6) and interpreted by Patton and others in 1980 (5), identified a "cup-shaped negative anomaly" approximately 3.1 mi (5 kilometers) in diameter" centered on the Won prospect. The survey was flown at 984 ft (300 meters) above the ground at a line spacing of 1 mi (1.6 kilometers). Patton and others (5) interpret the anomaly as reflecting a "single large reversely magnetized body at shallow depth". The reverse magnetic signature is interpreted to reflect remanent magnetism induced in the rocks as they cooled during a period when the earth's magnetic field was reversed (5).

As figure 2 shows, dikes cover a very small surface area at the prospect and could hardly account for a large aeromagnetic anomaly. Therefore, Patton and others suggest that these dikes coalesce at depth to form a single igneous body.

## Vein Deposits

Vein deposits at the Won prospect largely consist of breccia veins that are cemented by minor amounts of quartz, tourmaline, or metal-oxides. Mapping has shown that the breccia veins trend 115-125° or 150-160° and generally dip moderately to steeply south with minor sympathetic structures dipping steeply north.

The following list generalizes the textural and mineralogic characteristics observed in the collective vein population and the subsequent text describes observations of individual vein systems.

- 1. Gossany, silicified, brecciated hornfels contain abundant goethite, limonite, psilomelane, and unidentified metal-oxide cements. Locally, abundant cassiterite lines abundant open spaces. Individual breccia veins vary from inches to 6-7 ft in width.
- 2. Buff-colored, silicified, brecciated, and crackle brecciated hornfels are cemented with thin films of quartz plus or minus tourmaline. Breccia contains abundant open space and not matrix supported. Locally, cassiterite lines voids and joint planes. Narrow cassiterite-rich portions up to 8 in thick are present within zones of crackle breccia.
- 3. Massive milky quartz veins, generally less than 1 ft wide taht are green scorodite stained, and contain minor arsenopyrite, tetrahedrite, and rare cassiterite. Strike lengths are short. They are isolated within breccia vein systems.
- 4. A zone containing a stockwork of narrow anastomosing quartz veinlets with minor amounts of arsenopyrite, chalcopyrite, tetrahedrite, and cassiterite occurs at the prospect.
- 5. Tourmaline (black, fine-grained) is present along quartz vein margins, in vugs, and as thin black massive veinlets.

All or only some of the above characteristics may be found in any one breccia vein. Stockwork veining was found in only one area (Stockwork Zone, fig. 2). Breccia veins change considerably over short distances from micro- to coarse angular fragmental or crackle breccias and vary in width from a few inches up to 20 ft. The larger veins usually incorporate intensely fractured and often mineralized wall rock as part of their estimated width. Abundant angular voids and joints are often lined with druse of fine-grained cassiterite when near tin-mineralized breccias. The gossany breccia veins generally lack primary sulfide minerals.

Cassiterite appears to represent the latest stage of hydrothermal activity and to have precipitated in open spaces. This characterisitic persists in breccia veins throughout the prospect.

Names of the veins described in this report are those used by Anaconda Minerals (§) and applied by the Bureau for report purposes only. Tables 2 through 10 list the analyses for gold, silver, arsenic, copper, iron, lead, antimony, tin, tungsten, and zinc for all of the samples pertaining to these veins. The appendix lists analyses of additional elements.

## Analytical Methods

In tables 2 through 10, gold, silver, arsenic, iron, antimony, tungsten and zinc analyses are by instrumental neutron activation analysis. Tin analysis is by X-ray fluorescence except where \* denotes tin-assay, and copper and lead are analyzed by atomic absorption spectrometry. All analyses were conducted by Bondar-Clegg & Co. Ltd., 12980 West Cedar Dr., Lakewood, Co. 80228.<sup>3</sup>

#### Stockwork Zone

The Stockwork zone is comprised of hornfels that contains minor amounts of arsenopyrite, chalcopyrite, sphalerite, tetrahedrite and cassiterite in a stockwork of narrow anastomosing quartz plus or minus tourmaline veinlets (fig. 3). Select samples contain elevated gold values; map numbers 19 and 22, table 2, contained 1.55 and 0.58 ppm Au respectively. Gold occurs as 9 to 18  $\mu$ m size grains within healed crushed zones in quartz veins that are marked by streams of secondary fluid inclusions. Both cassiterite and arsenopyrite are found in quartz veins containing gold. A copper-rich, sheared and altered, andesite dike contains up to 2.64% Cu and 435 ppm Sn within the Stockwork Zone (map numbers 15 and 21, table 2).

Stockwork quartz veining and associated metallic mineralization cross-cut the tourmalinized and brecciated hornfels, often with a density of 20 to 30 veinlets per foot (fig. 3). Veinlets generally vary in width from 1/6- to 1/2-in; however, larger veins do occur with widths up to 1 ft.

### Gemini Veins

Breccia veins in the Gemini vein area consist of two closely spaced, parallel veins (fig. 4). Tin values ranged from 220 to 5,700 ppm in chip samples that spanned 3.3 to 16.5 ft at the north vein (map locations 27-32, 37-38, fig. 4, table 3).

Gemini vein south is similar to the northern vein except a high-grade zone (3.51% Sn across 3.5 ft, map number 35, table 3) is localized in an 8-in-thick, moderately dipping, cassiterite-matrix supported breccia vein bounded by tourmaline and silica-cemented crackle breccia (fig. 5). Rocks with high concentrations of cassiterite crop out on the east side of the ridge and could not be traced along the breccia vein to the west side. Gemini vein north is oriented 124°/45°S and the south vein is oriented 123°/38°S. From outcrop exposures, the north vein has a minimum strike length of 600 ft and the south vein has a minimum strike length of 300 ft (fig. 2).

<sup>&</sup>lt;sup>3</sup>The use of Bondar-Clegg and Co. Ltd. laboratories does not imply endorsement by the U.S. Bureau of Mines.

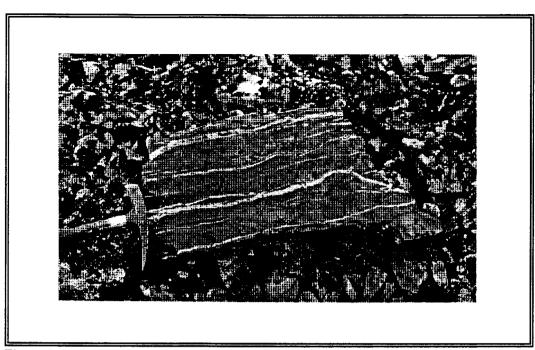



Figure 3. --Ribbon quartz stockwork veined hornfels rubble with arsenopyrite, tetrahedrite, chalcopyrite, sphalerite and cassiterite.

Table 2. -- Analytical results for samples of the Stockwork zone

| Map<br>Number | Sample<br>Number | Au<br>ppb       | Ag<br>ppm                                | As<br>ppm      | Cu<br>ppm          | Fe<br>pct       | Pb<br>ppm             | Sb<br>ppm | Sn<br>ppm                             | W<br>ppm | Zn<br>ppm |  |  |  |
|---------------|------------------|-----------------|------------------------------------------|----------------|--------------------|-----------------|-----------------------|-----------|---------------------------------------|----------|-----------|--|--|--|
| 15            | KS27506          | <5              | 6                                        | 99             | 26400              | 7.3             | <2                    | 3.9       | 140                                   | <2       | 1100      |  |  |  |
| 16            | KS27507          | 18              | 10                                       | 1780           | 370                | 5.2             | 177                   | 65.1      | 260                                   | 13       | <200      |  |  |  |
| 19            | KS27505          | 1550            | 86 19400 5615 4.0 1599 440.0 205 <15 <20 |                |                    |                 |                       |           |                                       |          |           |  |  |  |
| 20            | KS27504          | 100             | <5                                       |                |                    |                 |                       |           |                                       |          |           |  |  |  |
| 21            | KS27503          | <5              | <5                                       |                |                    |                 |                       |           |                                       |          |           |  |  |  |
| 22            | KS27502          | 558             | 15                                       | >30000         | 6667               | 5.7             | 68                    | 136.0     | 300                                   | 15       | 1700      |  |  |  |
| Map<br>Number | Sample<br>Number |                 |                                          |                |                    | I               | Sample<br>Description |           | · · · · · · · · · · · · · · · · · · · |          |           |  |  |  |
| 15            | KS27506          | Grab; mala      | hite-azurite                             | stained carbon | ate-tourmaline al  | tered andesite  | dike                  |           |                                       |          |           |  |  |  |
| 16            | KS27507          | Random chi      | ps; gossany                              | breccia and fa | ult gouge in hom   | fels            |                       |           |                                       |          |           |  |  |  |
| 19            | KS27505          | Select grab;    | 2-in quartz                              | vein: arsenopy | rite, chalcopyrite | , tetrahedrite, | cassiterite           |           |                                       |          |           |  |  |  |
| 20            | KS27504          | Random chi      | p of 15- to 2                            | 0-st-wide faul | gouge and bree     | cia zone        |                       |           |                                       |          |           |  |  |  |
| 21            | KS27503          | Grab; malac     | hite-azurite                             | stained carbon | ate-tourmaline al  | tered andesite  | dike                  |           |                                       |          |           |  |  |  |
| 22            | KS27502          | Select grab;    | quartz-arser                             | opyrito-tourms | line veins from    | laminar stocky  | ork in siltston       | ÷         |                                       |          |           |  |  |  |
| Note: all map | numbers referen  | ce locations or | n figure 2.                              |                |                    |                 |                       |           |                                       |          |           |  |  |  |

Table 3. -- Analytical results for samples of the Gemini veins

| Map<br>Number | Sample<br>Number | Au<br>ppb       | Ag<br>ppm       | As<br>ppm         | Cu<br>ppm         | Fe %               | Pb<br>ppm           | Sb<br>ppm                             | Sn<br>ppm | W    | Za<br>ppm |  |  |  |  |
|---------------|------------------|-----------------|-----------------|-------------------|-------------------|--------------------|---------------------|---------------------------------------|-----------|------|-----------|--|--|--|--|
| 27            | KS27527          | <5              | 5               | 136               | 62                | 6.2                | 94                  | 32.7                                  | 310       | 74   | <200      |  |  |  |  |
| 28            | KS27528          | 62              | 6               | 438               | 67                | 6.8                | 228                 | 79.1                                  | 1100      | 31   | <200      |  |  |  |  |
| 29            | KS27524          | 120             | 5               | 146               | 76                | 4.3                | 338                 | 68.8                                  | 5700      | 46   | <200      |  |  |  |  |
| 30            | KS27531          | 7               |                 |                   |                   |                    |                     |                                       |           |      |           |  |  |  |  |
| 31            | KS27525          | 33              | <5              | 70                | 36                | 3.3                | 10                  | 38.9                                  | 385       | 31   | <200      |  |  |  |  |
| 32            | KS27526          | 34              | <5              | 58                | 51                | 4.0                | 113                 | 43.1                                  | 625       | 35   | <200      |  |  |  |  |
| 33            | KS23429          | 32              |                 |                   |                   |                    |                     |                                       |           |      |           |  |  |  |  |
| 34            | KS27501          | 13              |                 |                   |                   |                    |                     |                                       |           |      |           |  |  |  |  |
| 35            | KS27533          | 7               |                 |                   |                   |                    |                     |                                       |           |      |           |  |  |  |  |
| 36            | KS27532          | <5              | 47              | 864               | 94                | 7.6                | 239                 | 34.8                                  | 905       | 1730 | 390       |  |  |  |  |
| 37            | KS27529          | 69              | 2               | 437               | 243               | 6.5                | 11                  | 67.5                                  | 220       | 44   | <200      |  |  |  |  |
| 38            | KS27530          | <5              | 19              | 1610              | 159               | 7.6                | 107                 | 73.3                                  | 220       | 120  | <200      |  |  |  |  |
| Map<br>Number | Sample<br>Number |                 |                 |                   |                   |                    | Sample<br>scription |                                       |           |      |           |  |  |  |  |
| 27            | KS27527          | 44 in contin    | mous chip of    | silcified fractu  | red siltstone an  | d 4 in Fe-oxide    | gossan              |                                       |           |      |           |  |  |  |  |
| 28            | KS27528          | 16 ft semi-c    | continuous chi  | ip of variably l  | brecciated-fractu | ared siltstone     |                     |                                       |           |      |           |  |  |  |  |
| 29            | KS27524          | 9 ft continu    | ous chip of v   | ariably fracture  | ed and brecciate  | ed siltstone       |                     | •                                     |           |      |           |  |  |  |  |
| 30            | KS27531          | 40 in contin    | wous chip of    | fractured, goss   | sany hornfels w   | ith 6 in gossan    | breccia zone        |                                       |           |      |           |  |  |  |  |
| 31            | KS27525          | 3.5 ft contin   | nuous chip of   | buff-colored s    | ilcified brecciat | ed siltstone       |                     |                                       |           |      |           |  |  |  |  |
| 32            | KS27526          | 12 ft contin    | nous chip of    | variably brecci   | ated to fracture  | d, silicified silt | stone               |                                       |           |      |           |  |  |  |  |
| 33            | K\$23429         | Random chi      | ips of olive-co | olored, silicifie | d siltstone bree  | cia; abundant c    | assiterite          |                                       |           |      |           |  |  |  |  |
| 34            | KS27501          | High-graded     | cassiterite-n   | natrix siltstone  | breccia; rubble   | boulder 3 by 2     | 2 by Ift            |                                       |           |      |           |  |  |  |  |
| 35            | KS27533          | 44 in contin    | wous chip; si   | licified, fractur | ed siltstone; 8   | in cassiterite-m   | atrix breccia       |                                       | ***       |      |           |  |  |  |  |
| 36            | KS27532          | 8.5 ft contin   | nuous chip of   | variably brece    | iated-fractured   | gossany siltstos   | <b>x</b>            |                                       |           |      |           |  |  |  |  |
| 37            | KS27529          | 10 ft continu   | uous chip of    | variably brecci   | ated-fractured,   | silicified siltsto | ne                  | *                                     |           |      |           |  |  |  |  |
| 38            | KS27530          | 16.5 ft cont    | inwous chip o   | f variably bree   | ciated-fractured  | , silicified silts | tone                | · · · · · · · · · · · · · · · · · · · | •         |      |           |  |  |  |  |
| Note: all map | numbers referer  | oce locations o | n figure 4      |                   |                   |                    |                     |                                       |           |      |           |  |  |  |  |

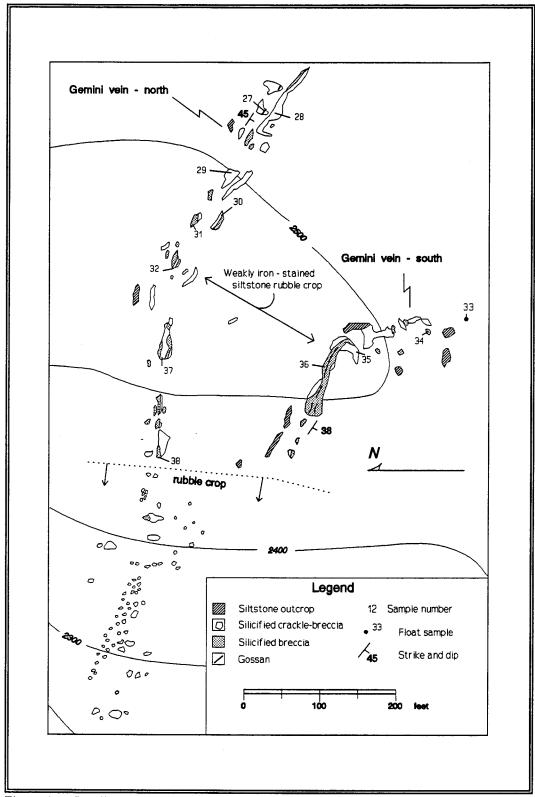



Figure 4. --Detail geologic and sample location map of the Gemini veins.

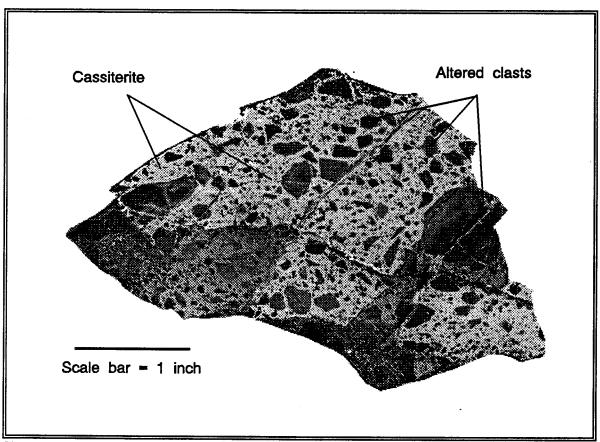



Figure 5. -- Cassiterite-matrix-supported siltstone breccia; White matrix is cassiterite coated with elemental tin by chemical etching.

## Tin Ridge Veins

Tin Ridge breccia veins are comparable to the Gemini breccia veins. Individual breccia veins are not easily defined as most mineralized material is rubble. In rubble samples cassiterite fills voids and lines fracture openings in the silicified crackle brecciated hornfels. It also occurs in high concentrations with quartz as a matrix to angular breccia clasts. Cassiterite-mineralized rubble is broadly distributed several tens of feet perpendicular to concentrations of cassiterite-rich breccia vein rubble. Samples contained from 0.08 to 9.3% Sn (49-53, table 4).

A possible extension of the Tin Ridge system may be projected on strike to the southeast to map location 53 (fig. 2, table 4), where a 1 ft by 3 ft by 2 ft rubble boulder of cassiterite-bearing, gossany, and silicified crackle breccia occurs in a linear trough which cuts across the nose of a ridge. The Tin Ridge system has a possible strike length of approximately 3,000 ft by projection to map location 53 (fig. 2, table 4). An estimate of the width cannot be established without drilling.

## Prospect Pit Vein

The Prospect Pit vein is so named because a series of prospect pits are distributed across a rubble exposure of gossany, brecciated hornfels. The pits expose a mineralized zone estimated to be 10- to 15-ft-wide. A strike length of at least 1,300 ft is indicated by the distribution of vein rubble material, which strikes

## approximately 125°.

The breccia vein system consists of metal-oxide cemented breccias, anastomosing milky quartz-veined breccias (map number 65, table 5), and silicified crackle breccias (map number 64, table 5). Although high concentrations (10-30%) of cassiterite occur in breccias with abundant milky quartz, textural relations indicate that the cassiterite is not coincident to quartz deposition. Rare, fist-sized specimens of coarse-grained (one to several mm) massive cassiterite containing 10% breccia fragments were found in the rubble.

Cassiterite distribution is spotty and rocks with minor cassiterite were difficult to distinguish from barren rock because of the copious amount of metal-oxide cement that coats fracture surfaces. Sulfide minerals were not observed. Samples contained from 0.13 to 0.5% Sn (64-65, table 5).

Table 4. -- Analytical results for samples of the Tin Ridge veins

| Map<br>Number | Sample<br>Number | Au<br>ppb       | Ag<br>ppm                             | As<br>ppm        | Cu<br>ppm        | Fe<br>%           | Pb<br>ppm          | Sp<br>bbm        | Ser<br>Ser      | W ppm  | Zn<br>ppm |
|---------------|------------------|-----------------|---------------------------------------|------------------|------------------|-------------------|--------------------|------------------|-----------------|--------|-----------|
| 49            | KS27511          | 18              | -5                                    | 8500             | 90               | 3.1               | 24                 | 35.1             | *32500          | 35     | -200      |
| 50            | KS27513          | 12              | 12 60 1140 143 5.7 1314 237.0 7000 32 |                  |                  |                   |                    |                  |                 |        |           |
| 51            | KS27535          | 19              | -5                                    | 6440             | 655              | 13.0              | 186                | 210.0            | 855             | 18     | 870       |
| 52            | KS27515          | -5              | -5                                    | 734              | 171              | 10.0              | 78                 | 78.6             | 4700            | 27     | 1100      |
| 53            | KS27539          | 21              | 280                                   | 5910             | 743              | 10.0              | 5615               | 265.0            | *93000          | 89     | 2000      |
| Map<br>Number | Sample<br>Number | ,               | ·                                     |                  |                  |                   | ample<br>criptions |                  |                 |        |           |
| 49            | KS27511          | Float: Cass     | iterite-rich sil                      | icified brecciat | ed hornfels; me  | derately abund    | ant Fe-stain       |                  |                 |        |           |
| 50            | KS27513          | Select chips    | of highly bre                         | ecciated segme   | nts of 40-ft-wid | ic fracture and   | shear zone         |                  |                 |        |           |
| 51            | KS27535          | Random chi      | ip off 4 by 4                         | by 2 ft boulder  | s of gossamy b   | receisted siltsto | ne                 |                  |                 |        |           |
| 52            | KS27515          | Random chi      | p of Fe-oxide                         | comented bre     | ociated sandsto  | ne; variably ab   | undant cassiter    | ite              |                 |        |           |
| 53            | KS27539          | Grab of 3 b     | y 2 by 1 ft be                        | oulder of gossa  | ny, brecciated-  | fractured siltste | one; amenopyri     | te and cassiteri | te in questz ve | inlets |           |
| Note: all map | numbers referer  | nce locations o | n figure 2                            |                  |                  |                   |                    |                  |                 |        |           |

Table 5. -- Analytical results for samples of the Prospect Pit vein

| Map<br>Number | Sample<br>Number | Au<br>ppb    | Ag<br>ppm      | As<br>ppm       | Cu<br>ppm       | Fe<br>%          | Pb<br>ppm            | Sb<br>ppm | Sn<br>ppm | W  | Zn<br>ppm |
|---------------|------------------|--------------|----------------|-----------------|-----------------|------------------|----------------------|-----------|-----------|----|-----------|
| 64            | KS27661          | -            | -              | •               | -               | •                | •                    |           | 1300      | •  |           |
| 65            | KS27519          | 32           | 15             | 48              | 10              | 1.2              | 329                  | 20.8      | *5000     | 19 | -200      |
| Map<br>Number | Sample<br>Number |              |                |                 |                 |                  | Sample<br>escription |           |           |    |           |
| 64            | KS27661          | Random chi   | p of 10-ft-wi  | ic gossany, cra | ckie brocciate  | l hornfels       |                      |           |           |    |           |
| 65            | KS27519          | Select chips | of cassiterite | -bearing, quart | z veined, buff- | colored fracture | ed sandstone         |           |           |    |           |

#### South Vein

The South vein was originally located (1983) and drilled (1984) by Anaconda Minerals Co. (8). A strike length of approximately 4,300 ft is estimated by the trace of rubblecrop exposures of gossany breccia vein material. From three widely spaced points, the orientation of the South vein was computed to strike about 130° and dip 28° to the southwest. Diamond drill hole cross-sections (8) indicate that the South vein dips 45° to the southwest similar to the nearby Gemini veins. Table 6 lists analytical results of rubblecrop samples taken by the Bureau along the South vein. Samples contained from 0.14 to greater than 2% Sn (39-45, table 6).

Anaconda Minerals Co. drilling confirmed a moderately dipping tin-bearing structure with values up to 8.15% Sn and 3.91 oz/st Ag over 1.5 ft within zones of lower grade mineralization (0.26% Sn and 0.91 oz/st Ag over 11.3 ft)(8). The erratic distribution, character, and grades of tin encountered in the drill holes is similar to rubble- and outcrop exposures at other significant breccia veins. Geochemical analysis (9) indicates less than 500 ppm Cu, Pb, or Zn are present in samples with high tin and silver values in the South vein drill hole samples.

Table 6. -- Analytical results for samples of the South vein

| Map<br>Number | Sample<br>Number | Au<br>ppb      | Ag<br>ppm                                     | As<br>ppm       | Cu<br>ppm        | Fe<br>%          | Pb<br>ppm             | Sp ppm | Sn<br>ppm | W   | Zn<br>ppm |  |  |  |
|---------------|------------------|----------------|-----------------------------------------------|-----------------|------------------|------------------|-----------------------|--------|-----------|-----|-----------|--|--|--|
| 39            | KS23192          | 120            | 19                                            | >30000          | 366              | 7.8              | 244                   | 455.0  | > 20000   | 365 | 1800      |  |  |  |
| 40            | KS23193          | 20             | 20 12 3480 128 8.2 97 80.9 *6500 58 490       |                 |                  |                  |                       |        |           |     |           |  |  |  |
| 41            | KS23191          | 16             | 16 -5 4930 274 14.0 187 142.0 1400 27 1400    |                 |                  |                  |                       |        |           |     |           |  |  |  |
| 42            | KS23194          | 79             | 79 190 9280 506 24.0 551 601.0 18000 367 2200 |                 |                  |                  |                       |        |           |     |           |  |  |  |
| 43            | KS23195          | 55             |                                               |                 |                  |                  |                       |        |           |     |           |  |  |  |
| 44            | KS23190          | 15             | 30                                            | 2310            | 1028             | 32.0             | 2186                  | 258.0  | > 20000   | 110 | 1200      |  |  |  |
| 45            | KS27534          | 31             | 26                                            | 661             | 422              | 19.0             | 707                   | 157.0  | 1400      | 29  | 380       |  |  |  |
| Map<br>Number | Sample<br>Number |                |                                               |                 |                  | D                | Sample<br>escriptions |        |           |     |           |  |  |  |
| 39            | KS23192          | 4 in greenis   | h, cherty qua                                 | rtz vein, minor | amenopyrite s    | and cassiterite  |                       |        |           |     |           |  |  |  |
| 40            | KS23193          | Random chi     | ps of silicifie                               | d crackle breco | riated sandston  | e; minor cassite | erite                 |        |           |     |           |  |  |  |
| 41            | K\$23191         | Random chi     | ps of gossam                                  | , brecciated si | ltstone; pieces  | up to ll in.     |                       |        |           |     |           |  |  |  |
| 42            | KS23194          | Random chi     | ps of gossan                                  | veinlets and go | esany fracture   | d siltstone      |                       |        |           |     |           |  |  |  |
| 43            | KS23195          | Random chi     | ps of 4 by 3                                  | by 1.5 ft gossa | ny, silicified b | recciated sands  | tone                  |        |           |     |           |  |  |  |
| 44            | KS23190          | Float: 4 in l  | Fe-rich gossar                                | n vein          |                  |                  |                       |        |           |     |           |  |  |  |
| 45            | KS27534          | Random chi     | p of 8-10 ft b                                | locks of gossar | ny brecciated i  | normfels         |                       |        |           |     |           |  |  |  |
| Note: all map | numbers referenc | e locations on | figure 2                                      |                 |                  |                  |                       |        |           |     |           |  |  |  |

## Standoff Ridge Vein

The Standoff Ridge vein was discovered and drilled by Anaconda Minerals Co. in 1983 and 1984 respectively (2). Two shallow drill holes, spaced 200 ft apart, were designed to cut a northwest trending zone of arsenopyrite-bearing quartz veins and silicified crackle breccia. In the northern drill hole "four narrow southwest-dipping zones of local clay alteration associated with quartz-arsenopyrite vein mineralization" contained tin values in the range of 125-680 ppm and silver values that ranged from 1.1 to 4.6 oz/st over assay

widths of 2 to 6 ft (2). Low silver grades (<3 ppm) were encountered in the drill hole to the south, and two 5 ft intervals contained 0.62 and 0.14% Sn near the bottom of the hole (2). According to an internal company report (8), the southerly drill hole missed the projected target suggesting that the structure dips steeply to the east. The mineralized intercepts at the bottom of the hole were suggested to represent altered igneous rock.

A random chip sample (map number 8, table 7) across this 55-ft-wide rubble exposure of silicified, gossany, crackle brecciated hornfels confirmed the minimal tin values (280 ppm) in this breccia system. Anaconda collected six 45- to 120-ft-long rock chip samples across this same exposure which contained 134 to 1,965 ppm Sn and 13 to 44 ppm Ag (g). A lens-like, arsenopyrite-bearing, quartz vein lies in the center of the breccia system and contains up to 8.48 ppm Au and >300 ppm Ag in select samples (map number 9, table 7). The quartz vein width does not exceed 1 ft.

A minimum strike length of 1,500 ft, and a potential strike length of 2,500 ft is indicated from the distribution of silicified and brecciated hornfels along a projected trend bearing 160° to the northwest.

Мар w Cu Pb Sb Zn Au ٨a Αg Number ppb ppm ppm ppm ppm ppen ppm ppm ppm KS27236 66 33 14300 149 3.7 55 56.9 280 46 260 8480 9 KS27237 > 300 > 30000 1035 16.0 160 471.0 140 40 5800 Sample Map Numbe KS27236 Random chip across 55-ft-wide silicified, gossamy, crackle brecciated siltstone KS27237 High-graded greenish chert-like matrix to brecciated milky white quartz vein Note: all map numbers reference locations on figure 2

Table 7. -- Analytical results for samples of the Standoff Ridge vein

#### Dog Day Vein

One of the best exposed structures at the Won prospect is the Dog Day vein. Its minimum indicated strike length is 3,500 ft. Actual widths are difficult to determine, but based upon a few outcrops and large boulders of rubble, the breccia vein has a minimum average width of 6 to 7 ft. The orientation of the structure is 125° with a moderate dip to the south. The Dog Day vein contains tin values that range from 0.1 to 4.53% Sn (57-63, table 8). The vein is mostly composed of metal-oxide cemented, silicified and brecciated hornfels with localized areas of arsenopyrite-bearing quartz veining (table 8).

#### Gash Vein

The Gash vein was discovered, prospected, and drilled by Anaconda Minerals Co. in 1983 and 1984 (2). The vein system is exposed by a shallow hand-dug trench across a mineralized structure consisting "of three parallel gossan veins from 0.25 to 1.8 feet wide within a sheared and broken zone 15 feet wide" (2). Surficial expression of the structure is a wide, linearly oriented, iron stained rubblecrop. Anaconda Minerals Co. found up to 6.9% Sn and 3.3 oz/st Ag in their initial grab samples from the Gash vein (8). Trace element geochemistry of continuous chip samples from the prospect trench indicated up to 2,120 ppm Zn, >1,000 ppm As, 60 ppm Pb, 41 ppm Ag, 2,250 ppm Sn, and 2,250 ppm Sb (8). Bureau sampling (map number 66, table 9) found only minor base-metal values, minimal tin, and up to 86 ppm Ag.

One drill hole (-51°, bearing S44°W) was collared within 50 ft of the hand-dug trench and another drill hole was collared about 300 ft along strike to the northwest and drilled at an angle of -60°, bearing

N50°E. Significant tin values do not occur in either of the drill holes (values up to 0.061% Sn) and silver values ranged up to 4.44 oz/st over a width of 1.6 ft (2). A strike length of approximately 1,000 ft is indicated from rubblecrop exposures. Drilling did not provide information on dip orientation.

Table 8. -- Analytical results for samples of the Dog Day vein

| Map<br>Number | Sample<br>Number | Au<br>ppb      | Ag                                    | As<br>ppm        | Cu<br>ppm        | Fe<br>%           | Pb<br>ppm          | Sb<br>ppm | Sn<br>ppm | W | Zn<br>ppm |  |  |
|---------------|------------------|----------------|---------------------------------------|------------------|------------------|-------------------|--------------------|-----------|-----------|---|-----------|--|--|
| 57            | KS27666          |                | •                                     |                  | -                | •                 | •                  | -         | 12800     | - |           |  |  |
| 58            | KS27518          | 19             | 19 17 4380 341 8.7 2827 329 4500 18 2 |                  |                  |                   |                    |           |           |   |           |  |  |
| 60            | KS27665          |                |                                       | •                |                  | •                 | -                  | -         | 4800      | • | •         |  |  |
| <b>6</b> i    | KS27664          |                |                                       |                  | •                | •                 | -                  |           | 5800      |   |           |  |  |
| 62            | KS27663          | •              | •                                     |                  |                  |                   | -                  | -         | *45800    | - |           |  |  |
| 63            | KS27662          |                |                                       |                  |                  | -                 | -                  |           | 1000      | • | •         |  |  |
| Map<br>Number | Sample<br>Number |                |                                       |                  |                  |                   | ample<br>criptions |           |           |   |           |  |  |
| 57            | K\$27666         | Random chi     | ps of silicified                      | , gossany, bre   | ociated hornfels | ; estimated wid   | th 7-8 ft          |           |           |   |           |  |  |
| 58            | KS27518          | Random chi     | ps of 7-10 ft v                       | vide, cassiterit | bearing, Fe-or   | cide and silica c | emented brocci     | ia        |           |   |           |  |  |
| 60            | KS27665          | Random chi     | ps of gossany,                        | silicified, bro  | cciated hornfels | ; estimated wide  | ih 5-10 ft         |           |           |   |           |  |  |
| 61            | KS27664          | Random chi     | ips of 4.5-ft-wi                      | ide zone of goe  | sany, silicified | brecciated horn   | fels               |           |           |   |           |  |  |
| 62            | KS27663          | Random chi     | ps of 6-ft-wide                       | zone of gossa    | my, silicified b | reccia; minor an  | enopyrite          |           |           |   |           |  |  |
| 63            | KS27662          | Random chi     | ps of gossany,                        | silicified bree  | ciated homfels,  | estimated width   | s 5-10 ft          |           |           |   |           |  |  |
| Note: all map | numbers referenc | e locations on | figure 2                              |                  |                  |                   |                    |           |           |   |           |  |  |

Table 9. -- Analytical results for a sample of the Gash vein

| Map<br>Number | Sample<br>Number  | Au<br>ppb        | Ag<br>ppm    | As<br>ppm       | Cu<br>ppm       | Fe<br>%          | Pb<br>ppm           | Sp<br>Sp | Sn<br>ppm | ppm.<br>W | Zn<br>ppm |
|---------------|-------------------|------------------|--------------|-----------------|-----------------|------------------|---------------------|----------|-----------|-----------|-----------|
| 66            | KS27520           | 170              | 86           | 2300            | 681             | 28.0             | 62                  | 67.0     | 230       | 7         | 5200      |
| Map<br>Number | Sample<br>Number  |                  |              |                 |                 |                  | iample<br>scription |          |           |           |           |
| 66            | KS27520           | Random chip      | e of goesany | siltstone brece | ia; gossan on j | oints and fractu | 64                  |          |           |           |           |
| Note: map mu  | mbers reference l | ocations on figu | re 2         |                 |                 |                  |                     |          |           |           |           |

#### Other Occurrences

Other occurrences of significant tin mineralization were also discovered in rubble crop or at a few poorly exposed breccia vein outcrops. For example, a buff-colored silicified brecciated siltstone with minor cassiterite and quartz forms a northwest-trending breccia vein at map location 13 (fig. 2). Random chip sampling yielded 1.13% Sn from this 2- to 3-ft-wide vein (map number 13, table 10).

At map location 1 (fig. 2, table 10), gossany, brecciated and silicified siltstone contained 1.18% Sn in select chips from a poorly exposed rubblecrop. Vegetation precluded tracing any veins at this location. however, it is worth noting that this occurrence is close to an altered andesite dike that contains up to 700 ppm Sn (map location 4, fig. 2, table 1).

Table 10. -- Analytical results for samples of other vein occurrences

| Map<br>Number | Sample<br>Number | Au<br>ppb | Ag<br>ppm | As<br>ppm   | Cu<br>ppm  | Fe<br>%  | Pb<br>ppm | Sb<br>ppm | Sn<br>ppm      | W<br>ppm | Zn<br>ppm |                                                                                          |
|---------------|------------------|-----------|-----------|-------------|------------|----------|-----------|-----------|----------------|----------|-----------|------------------------------------------------------------------------------------------|
| 1             | K\$27232         | <5        | 45        | 444         | 1710       | 8.0      | 40        | 14.0      | 11800          | 15       | 1100      | Chips of Fe-st, sili siltstone; qtz plus gssn veinlets                                   |
| 2             | KS27233          | <5        | 46        | 1530        | 2930       | 22.0     | 537       | 20.4      | 330            | 9        | 3300      | 5-in-wide banded gossany shear/ breccia vein                                             |
| 5             | KS27234          | <5        | <5        | 35          | 77         | 2.0      | 3         | 5.2       | 150            | 10       | <200      | Random chips of sili, gossany frac-brecciated siltstone                                  |
| 6             | KS27235          | <5        | 55        | 246         | 547        | 23.0     | 3110      | 36.4      | 105            | 11       | 2700      | High-grade of 5 in gossany breccia vein                                                  |
| 7             | KS27702          | -         | -         | -           | -          | -        | -         | 160       | _              | -        | -         | Random chips of sili, brec hnfl; minor aspy and Cu-<br>staining                          |
| 10            | KS23189          | <5        | <5        | 66          | 45         | 4.4      | 9         | 4.4       | 200            | 8        | <200      | High-graded chip of 4-5-ft-wide sill brec; minor Fe and As staining                      |
| 11            | KS23188          | <5        | <5        | 13          | 23         | 3.9      | <2        | 0.8       | <5             | <2       | 480       | Carbonate-altered biotite andesite with minor sphalerite and chalcopyrite in carbonate   |
| 12            | KS23187          | 69        | <5        | 5500        | 300        | 10.0     | 13        | 15.0      | 230            | 309      | 1000      | 4 in Fe-gossan vein plus 2 in sheared gossany siltstone                                  |
| 13            | KS25839          | 54        | 8         | 138         | 436        | 7.2      | 7         | 18.0      | 11300          | 16       | 1800      | Random chips: 2-3-ft-wide silicified brecciated sandstone; minor cassiterite and quartz  |
| 14            | KS27658          |           |           | _           | -          |          |           | 2900      | <del>-</del> _ |          | -         | Rubble: random chip of gossany brecciated hornfels                                       |
| 17            | KS27659          |           |           | -           |            | -        |           | 950       |                |          | -         | Bedrock; random chip of qtz stockwork in hornfels                                        |
| 18            | KS27508          | 35        | 13        | 1300        | 279        | 5.9      | 533       | 86.6      | 220            | 26       | 1100      | Random chips of brecciated and gossany hornfels                                          |
| 23            | KS27701          | -         | -         | -           | -          | -        | -         | 120       | -              | -        | -         | Random chips; quartz-veined brecciated hornfels;<br>arsenopyrite; estimated width 5 ft   |
| 24            | KS27523          | 51        | 75        | 2470        | 511        | 7.4      | 384       | 179.0     | 1500           | 66       | <200      | Random chips of sili, qtz-veined, gssn brec siltstone                                    |
| 25            | KS27522          | 27        | 48        | 2270        | 326        | 8.6      | 2764      | 664.0     | 200            | 21       | 210       | Random chips of sili, qtz-veined, gssn, brec siltstone                                   |
| 26            | KS27521          | 6         | <5        | 26          | 97         | 6.3      | <2        | 2.1       | 97             | <2       | 210       | Biotite andesite dike; minor pyrrhotite and chalcopyrite in tourmailne fracture fillings |
| 46            | KS27509          | 544       | 17        | >30000      | 470        | 6.3      | 15        | 229.0     | 35             | <17      | 1600      | Grab of 1-ft-wide anastomosing quartz veins with green, compact scorodite in voids       |
| 47            | KS27512          | <5        | <5        | 296         | 58         | 24.0     | 2         | 14.0      | 53             | 20       | 7600      | Random chips of 10-15-ft-wide, Fe-oxide cemented, brecciated siltstone                   |
| 48            | KS27510          | <5        | <5        | 126         | 90         | <0.5     | 16        | 1.0       | 39             | <2       | <200      | Grab of 10-ft-wide laminated leucocratic felsic dike                                     |
| 54            | KS27538          | 15        | 23        | 3960        | 2000       | 19.0     | 1764      | 177.0     | 220            | 8        | 4800      | Grab of <1-ft-thick wide gossany, brecciated siltstone                                   |
| 55            | KS27537          | 20        | 71        | 3780        | 244        | 6.2      | 1386      | 459.0     | 470            | 12       | 640       | Random chips off 9 by 6 by 3 ft gossany, silicified, brecciated-fractured siltstone      |
| 59            | KS27517          | <5        | <5        | 1120        | 175        | 7.6      | 102       | 105.0     | 545            | 11       | <200      | Chip of 6-ft-wide Fe-oxide cemented breccia and silicified sandstone                     |
| Abbreviat     | tions: Fe-si     | t = iro   | stain     | ing; sili : | - s111c1f1 | led: atz | = quartz  | : assn =  | gossan or      | gossanv  | brec = br | eccia or brecciated: frac = fractured: aspy = arsenopyrite                               |

Abbreviations: Fe-st = iron staining; sili = silicified; qtz = quartz; gssn = gossan or gossany; brec = breccia or brecciated; frac = fractured; aspy = arsenopyrite

Note: all map numbers reference locations on figure 2

## TIN RESOURCE ESTIMATION

Estimation of the tin resource at the Won prospect is hampered by the sparsity and lack of continuity of vein outcrops, and by the extreme variability of tin concentrations in these structures. Distribution of tin minerals at the Won prospect is characterized by high-grade ore shoots surrounded by broader zones of lower-grade disseminated mineralization. The Gemini vein south, Tin Ridge, South, and the Prospect Pit vein structures exemplify these characteristics.

A resource estimate of the South and the Dog Day veins is made based upon a length of influence for each sample (in feet), the tin concentration, the average width of the sample, a 12 ft<sup>3</sup>/st tonnage factor (based upon an average specific gravity of 2.42 for shale, abundant open space and minor metallic mineralization), and a 500 ft depth projection. Bureau method for estimating depth projection from surface geology is depth = ½ strike length. However, outcrops of these structures are so few that considerable uncertainty on the tenor of the deposits exists. A conservative estimate of 500 ft depth is therefore applied. Total strike length estimates are 4,540 and 3,220 ft respectively. Table 11 contains the pertinent data used in the resource calculations for the two veins.

Table 11. - Data for tin resource estimation calculations

|                 | Dog Day   | vein                     | South vein      |           |                          |  |
|-----------------|-----------|--------------------------|-----------------|-----------|--------------------------|--|
| Estimated width | Sn<br>ppm | Length of influence (ft) | Estimated width | Sn<br>ppm | Length of influence (ft) |  |
|                 |           |                          |                 |           |                          |  |
| 8.5             | 4,500     | 1,050                    | 11.3            | 2,600     | 1,300                    |  |
| 7.5             | 1,000     | 360                      | 1.5             | 3,800     | 1,960                    |  |
| 6.0             | 45,800    | 430                      | 9.0             | 1,400     | 1,280                    |  |
| 4.5             | 5,800     | 330                      | -               | -         | -                        |  |
| 7.5             | 4,800     | 450                      | -               | -         | -                        |  |
| 7.5             | 12,800    | 600                      | -               | -         | •                        |  |

Using the above data, 981,875 st containing 20,286,625 lb of tin for the Dog Day vein and 1,153,333 st containing 4,992,331 lb of tin for the South vein is calculated. Approximately 25.3 M lb of tin are estimated to occur in these two structures.

An additional 7,700 linear feet of breccia vein is indicated from the above descriptions, exclusive of the Dog Day and South veins. Mineralization observed in these breccia veins is too erratic (Gemini veins) or are too poorly exposed (Tin Ridge) to permit any qualified estimation of the tin resource.

Even though the elements niobium and tantalum occur in sufficiently high concentrations in some tin deposits to be considered by-products, samples with high tin values from the Won prospect (appendix) did not show elevated tantalum or niobium values. A sample containing 44.5% Sn (map number 34, table 3) analyzed

for niobium and tantalum by X-ray fluorescence contained only 7 ppm Nb and <3 ppm Ta respectively.

#### CONCLUSIONS

Tin deposits at the Won prospect were probably formed from late-stage, hydrothermal fluids which may be related to an underlying and unexposed pluton. Andesite and rhyolite dikes exposed in the prospect area are believed to represent differentiated fractions of the parent magma. Overlying sedimentary rocks were metamorphosed to hornfels as a result of pluton emplacement and were subsequently subjected to extensive tourmalinization and silicification during a period of brittle deformation. Northwest-trending veins of crackle breccia developed in concert with quartz-tourmaline alteration and were mineralized with cassiterite and base-metal-sulfide minerals. Arsenopyrite, pyrrhotite, sphalerite, chalcopyrite, and tetrahedrite were observed in some veins, but weathering oxidized most of the original sulfide minerals. Cassiterite occurs as a matrix in breccia veins and as drusy coatings on open-space fracture surfaces. Cassiterite often occurs in the absence of sulfide minerals.

Based upon limited sampling (few outcrops), a tin resource estimate of approximately 25.3 M lb of tin is estimated for two of the principal breccia veins, the Dog Day and the South veins. Additionally, an aggregate of 7,700 linear feet of tin-mineralized breccia vein can be estimated from projections between widely spaced bedrock and rubblecrop exposures of other individual breccia vein occurrences. Combining these additional breccia veins with the inferred tin resource of 25.3 M lbs of tin for the Dog Day and South veins, an inferred resource estimate might be doubled to 50.6 M lbs of tin.



#### REFERENCES

- 1. Carlin, J.F., Jr. Tin. in Mineral Commodity Summaries, 1989. Minerals Information Office, Department of Interior, Washington, D.C., 1990, pp. 170-171.
- 2. Burleigh, R.E.. Examination of the Win Tin Prospect, West-central Alaska. U.S. Bureau of Mines OFR-(in progress), 23 pp., 1 sheet.
- 3. King, H.D., D.A. Risoyli, E.F. Cooley, R.M. O'Leary, W.S. Speckman, D.L. Spiesman, Jr. and D.W. Galland. Final Results and Statistical Summary of Analysis of Geochemical Samples from the Medfra Quadrangle, Alaska. USGS OFR 80-811-F., 1980, 136 pp., 1 sheet.
- 4. Bundtzen, T.K., and W.G. Gilbert. Outline of Geology and Mineral Resources of Upper Kuskokwim Region, Alaska. Journal of the Alaska Geological Society, 1983, pp. 101-117.
- 5. Patton, W.W., Jr., J.W. Cady, and E.J. Moll. Aeromagnetic Interpretation of the Medfra Quadrangle, Alaska. USGS OFR 80-811E. 1982, 14 pp., 1 plate.
- 6. Moll, E.J., M.L. Silberman, and W.W. Patton, Jr. Chemistry, Mineralogy, and K-Ar Ages of Igneous and Metamorphic Rocks of the Medfra Quadrangle, Alaska. USGS OFR 80-811C. 1981, 19 pp., 2 plates.
- 7. U.S. Geological Survey. Aeromagnetic Map of the Medfra 1° by 3° Quadrangle, Alaska. OFR 79-380, scale 1:250,000, 1979, 1 plate.
- 8. Anaconda Minerals Company. Private Communication, 1984; available upon request from Bureau of Mines AFOC Fairbanks, Ak.
- 9. CIRI Minerals. Private Communication, 1985; available upon request from Bureau of Mines AFOC Fairbanks, Ak.

APPENDIX

ADDITIONAL ANALYTICAL RESULTS FOR ROCK SAMPLES

| Sample             | Ва              | Br      | Cđ               | Ce           | Co        | Cr          | Cs       | Eu       | Fe         |
|--------------------|-----------------|---------|------------------|--------------|-----------|-------------|----------|----------|------------|
| Number             | ppm             | ppm     | ppm              | ppm          | ppm       | ppm         | ppm      | ppm      | %          |
| KS23187            | <100            | 14      | 42               | <29          | <10       | 160         | 1        | <2       | 10.0       |
| KS23188            | 1500            | <1      | <10              | 53           | 17        | 51          | 3        | <2       | 3.9        |
| KS23189            | <100            | <1      | <10              | 60           | <10       | 230         | <1       | <2       | 4.4        |
| KS23190            | 340             | 6       | <10              | 42           | <10       | 85          | <1       | 2        | 32.0       |
| KS23191            | 260             | 9       | 19               | <30          | <10       | 260         | <1       | <2       | 14.0       |
| KS23192            | 500             | 65      | <68              | <79          | < 10      | <240        | <2       | <5       | 7.8        |
| KS23193            | 560             | 10      | <10              | <23          | 17        | 130         | 3        | <2       | 8.2        |
| KS23194            | <b>47</b> 0     | 142     | <43              | <60          | <10       | 180         | <1       | <2       | 24.0       |
| KS23195            | <460            | 141     | 73               | <100         | < 10      | <220        | <2       | <7       | 21.0       |
| KS23429            | <100            | 6       | <10              | 32           | < 10      | 120         | <1       | <2       | 23.0       |
| KS25839            | <100            | <1      | <10              | 13           | 14        | 180         | 2        | <2       | 7.2        |
| KS27232            | 140             | 2       | <10              | 25           | < 10      | 130         | <1       | <2       | 8.0        |
| KS27233            | 150             | 7       | 57               | <10          | 13        | < 50        | <1       | <2       | 22.0       |
| KS27234            | <100            | <1      | <10              | 24           | <10       | 250         | <1       | <2       | · 2.0      |
| KS27235            | <100            | 2       | <10              | <10          | <10       | 140         | 1        | <2       | 23.0       |
| KS27236            | <310            | 123     | <50              | <71          | < 10      | 240         | <1       | <2       | 3.7        |
| KS27237            | <b>&lt;89</b> 0 | 23      | <120             | <140         | <21       | <430        | <5       | <7       | 16.0       |
| KS27501            | <100            | 11      | <10              | <45          | <10       | 230         | <1       | <2       | 3.5        |
| KS27502            | <360            | 46      | <49              | <55          | 32        | <170        | <1       | 3        | 5.7        |
| KS27503            | 770             | <1      | <10              | 50           | 31        | 110         | 24       | <2       | 6.7        |
| KS27504            | 190             | 11      | <10              | <23          | <10       | 230         | 3        | <2       | 6.3        |
| KS27505            | <430            | 192     | <68              | 170          | 21        | <b>49</b> 0 | <2       | <5       | 4.0        |
| KS27506            | 1500            | <1      | <10              | 51           | 30        | 140         | 35       | <2       | 7.3        |
| KS27507            | 210             | 5       | <10              | 39           | <10       | 170         | <1       | <2       | 5.2        |
| KS27508            | 220             | 5       | <10              | 24           | <10       | 160         | <1       | <2       | 5.9        |
| KS27509            | <420            | 53      | <58              | <65          | <10       | 320         | <2       | <2       | 6.3        |
| KS27510            | 120             | <1      | <10              | 10           | <10       | <50         | 8        | <2       | < 0.5      |
| KS27511            | 180             | 74      | <43              | <39          | <10       | 200         | <1       | <2       | 3.1        |
| KS27512<br>KS27513 | 610             | 2       | 14               | 21           | 54        | 78          | 6        | <2       | 24.0       |
|                    | <100            | 6       | <10              | <10          | <10       | 250         | <1       | <2       | 5.7        |
| KS27515<br>KS27517 | 360             | 4       | <10              | 26           | <10       | 200         | 3        | <2       | 10.0       |
| KS27517<br>KS27518 | 370<br>360      | 5       | <10              | 24           | < 10      | 250         | <1       | <2       | 7.6        |
| KS27519            | <100            | 7<br><1 | <10              | <30          | 11        | 130         | <1       | <2       | 8.7        |
| KS27520            | 160             | 6       | <10<br><b>26</b> | <10          | <10       | 240         | <1       | <2       | 1.2        |
| KS27521            | 600             | <1      | <10              | <10<br>56    | 14        | 88          | 3        | <2       | 28.0       |
| KS27522            | <230            | 72      | <36              | < 4 <b>7</b> | 47<br><10 | 290<br>170  | 35       | <2       | 6.3        |
| KS27523            | <100            | 7       | <10              | <10          | <10       |             | <1       | <2       | 8.6        |
| KS27524            | <100            | 3       | <10              | 27           | <10       | 210<br>260  | <1<br><1 | <2<br><2 | 7.4<br>4.3 |
| KS27525            | <100            | 2       | <10              | 28           | <10       | 290         | <1       | <2       | 3.3        |
| KS27526            | <100            | 2       | <10              | 37           | <10       | 220         | <1       | <2       | 3.3<br>4.0 |
| KS27527            | <100            | 2       | <10              | 36           | <10       | 230         | <1       | <2       | 6.2        |
| KS27528            | <100            | 3       | <10              | 25           | <10       | 210         | <1       | <2       | 6.8        |
| KS27529            | <100            | 4       | <10              | 22           | <10       | 180         | <1       | <2       | < 6.5      |
| KS27530            | 110             | 7       | <10              | 35           | <10       | 200         | <1       | <2       | 7.6        |
| KS27531            | 110             | 4       | <10              | 72           | <10       | 180         | <1       | <2       | 9.0        |
| KS27532            | <100            | 16      | <10              | 17           | <10       | 230         | <1       | <2       | 7.6        |
| KS27533            | 110             | 3       | <10              | <10          | <10       | 260         | <1       | <2       | 7.0        |
| KS27534            | <100            | 5       | <10              | 39           | <10       | 110         | <1       | <2       | 19.0       |
| KS27535            | 280             | 12      | <10              | <30          | <30       | <10         | 180      | <1       | 13.0       |
| KS27537            | <210            | 5       | <10              | <30          | <10       | 150         | <1       | <2       | 6.2        |
| KS27538            | 400             | 10      | <10              | <25          | 23        | 150         | <1       | 4        | 19.0       |
| KS27539            | <230            | 6       | <22              | <38          | <10       | 99          | <1       | <2       | 10.0       |

## APPENDIX, CONTINUED

| Sample             | Hf      | Ir           | La       | Lu           | Мо       | Na          | Ni           | Rb                 | Sc         |
|--------------------|---------|--------------|----------|--------------|----------|-------------|--------------|--------------------|------------|
| Number             | ppm     | ppb          | ppm      | ppm          | ppm      | %           | ppm          | ppm                | ppm        |
| KS23187            | <2      | <100         | 18       | <.05         | 6        | 0.28        | <50          | <25                | 8.0        |
| KS23188            | 3       | <100         | 29       | <.05         | <2       | 2.0         | <50          | 76                 | 12.0       |
| KS23189            | 3       | <100         | 38       | <0.5         | <2       | 0.43        | <50          | <10                | 10.0       |
| KS23190            | <2      | < 100        | 42       | < 0.5        | <2       | 0.22        | 68           | <24                | 12.0       |
| KS23191            | <2      | < 100        | 18       | < 0.5        | 8        | 0.33        | <50          | <25                | 9.2        |
| KS23192            | <8      | <320         | 69       | <1.9         | 31       | < 0.49      | <87          | <63                | 8.0        |
| KS23193            | <2      | < 100        | 24       | < 0.5        | <2       | 0.28        | 77           | 59                 | 10.0       |
| KS23194            | <5      | <100         | 24       | <1.1         | 9        | 0.34        | <50          | <30                | 7.3        |
| KS23195            | <8      | <270         | 25       | <2.0         | <11      | < 0.93      | <b>7</b> 0   | <49                | 5.4        |
| KS23429            | <2      | <100         | 26       | 0.6          | 4        | 0.21        | < 50         | <10                | 6.9        |
| KS25839            | <2      | <100         | 9        | < 0.5        | <2       | < 0.05      | < 50         | 10                 | 4.6        |
| KS27232            | <2      | <100         | 16       | < 0.5        | <2       | 0.34        | <50          | <10                | 11.0       |
| KS27233            | <2      | <100         | 8        | <0.5         | <2       | 0.36        | <50          | <10                | 13.0       |
| KS27234            | 3       | <100         | 12       | <0.5         | <2       | 0.28        | <50          | <10                | 7.6        |
| KS27235            | <2      | <100         | 10       | < 0.5        | <2       | 0.15        | <50          | 16                 | 5.7        |
| KS27236            | <6      | <100         | 17       | <1.4         | <8       | 0.27        | <53          | <35                | 7.4        |
| KS27237            | <15     | < 560        | <5       | <3.3         | 42       | < 0.58      | <160         | <110               | <2.4       |
| KS27501            | <2      | <100         | 15       | <0.5         | <5       | 0.2         | <50          | <10                | 12.0       |
| KS27502            | <6      | <230         | <5       | <1.3         | 29       | < 0.23      | 140          | <47                | 7.9        |
| KS27503            | 3       | <100         | 27       | < 0.5        | <2       | 2.2         | 120          | 140                | 16.0       |
| KS27504            | <2      | <100         | 10       | < 0.5        | 4        | 0.50        | <50          | <21                | 8.5        |
| KS27505            | < 8     | <260         | 94       | <1.9         | 14       | < 0.48      | 130          | <46                | 6.9        |
| KS27506            | 2       | <100         | 26       | < 0.5        | <2       | 2.0         | 240          | 190                | 16.0       |
| KS27507<br>KS27508 | <2<br>3 | <100<br><100 | 24<br>10 | <0.5<br><0.5 | 4<br>3   | 0.49<br>0.4 | <50          | 18                 | 10.0       |
| KS27509            | <7      | <270         | <5       | < 1.6        | <11      | < 0.4       | <50<br>84    | <10<br><53         | 8.9        |
| KS27510            | 2       | <100         | <5       | <0.5         | <2       | 1.40        | <50          | 260                | 4.6<br>2.9 |
| KS27510<br>KS27511 | <2      | <100         | 9        | <0.5         | <5<br><5 | 0.25        | <50          | <10                | 7.2        |
| KS27511<br>KS27512 | 3       | <100         | 17       | <0.5         | <2       | 0.23        | 140          | 43                 | 10.0       |
| KS27512<br>KS27513 | <2      | <100         | 15       | <0.5         | 4        | 0.07        | <50          | <10                | 8.3        |
| KS27515            | 3       | <100         | 19       | <0.5         | <2       | 0.37        | < <b>5</b> 0 | 32                 | 8.3        |
| KS27517            | <2      | <100         | 12       | <0.5         | 3        | 0.28        | <50          | <10                | 6.0        |
| KS27518            | <2      | <100         | 12       | <0.5         | <2       | 0.23        | 80           | <26                | 4.9        |
| KS27519            | 3       | <100         | <5       | <0.5         | <2       | 0.26        | <50          | <10                | 5.9        |
| KS27520            | <2      | <100         | 12       | 0.6          | <2       | < 0.05      | 66           | 19                 | 8.6        |
| KS27521            | <2      | < 100        | 30       | < 0.5        | <2       | 1.3         | 65           | 120                | 17.0       |
| KS27522            | <2      | < 100        | 14       | 1.3          | 12       | 0.48        | 57           | <25                | 6.3        |
| KS27523            | <2      | < 100        | 18       | < 0.5        | 11       | 0.38        | <50          | <10                | 8.6        |
| KS27524            | 2       | < 100        | 21       | < 0.5        | <2       | 0.52        | < 50         | <10                | 10.0       |
| KS27525            | 4       | < 100        | 17       | < 0.5        | <2       | 0.54        | < 50         | <10                | 10.0       |
| KS27526            | 4       | < 100        | 21       | < 0.5        | <2       | 0.48        | <50          | <10                | 10.0       |
| KS27527            | 4       | <100         | 24       | < 0.5        | <2       | 0.5         | <50          | <10                | 11.0       |
| KS27528            | 3       | < 100        | 19       | < 0.5        | <2       | 0.44        | <50          | <10                | 9.4        |
| KS27529            | 3       | <100         | 18       | < 0.5        | <2       | 0.46        | <50          | <10                | 11.0       |
| KS27530            | <2      | <100         | 23       | < 0.5        | 4        | 0.42        | <50          | < 10               | 10.0       |
| KS27531            | 3       | <100         | 42       | < 0.51       | <2       | 0.42        | <50          | < 10               | 10.0       |
| KS27532            | 5       | <100         | 18       | < 0.5        | 8        | 0.41        | <50          | 14                 | 10.0       |
| KS27533            | <2      | <100         | 14       | < 0.5        | 2        | 0.38        | <50          | <10                | 11.0       |
| KS27534            | <2      | <100         | 20       | < 0.5        | <2       | 0.25        | <50          | 0</td <td>5.1</td> | 5.1        |
| KS27535            | <2      | <100         | 11       | < 0.5        | <4       | 0.29        | <50          | <27                | 9.3        |
| KS27537            | <2      | <100         | 16       | < 0.5        | 7        | 0.32        | <50          | <26                | 7.4        |
| KS27538            | <2      | <100         | 22       | < 0.5        | <2       | 0.24        | 110          | <22                | 5.8        |
| KS27539            | <2      | <100         | 10       | <0.5         | 9        | 0.31        | <50          | <29                | 4.3        |

APPENDIX, CONTINUED

| Sample             | Se         | Sm         | Та       | Тъ       | Te         | Th         | U           | Yb            | Zr           |
|--------------------|------------|------------|----------|----------|------------|------------|-------------|---------------|--------------|
| Number             | ppm        | ppm        | ppm      | ppm      | ppm        | ppm        | ppm         | ppm           | ppm          |
| KS23187            | <10        | 4.1        | <1       | <1       | <62        | 5.0        | 1.5         | 14            | <500         |
| KS23188            | <10        | 5.6        | 1        | 1        | <20        | 10.0       | 3.4         | <5            | < 500        |
| KS23189            | <10        | 6.1        | <1       | <1       | <20        | 5.9        | 2.0         | <5            | < 500        |
| KS23190            | 99         | 11.0       | <1       | <1       | <57        | 6.1        | 2.8         | <5            | < 500        |
| KS23191            | <10        | 4.1        | <1       | <1       | <63        | 4.8        | 0.7         | 16            | <500         |
| KS23192            | <47        | 14.0       | 3        | <1       | < 190      | 4.8        | <3.2        | 74            | <2300        |
| KS23193            | <10        | 5.0        | <1       | <1       | < 48       | 5.7        | 1.4         | 13            | < 500        |
| KS23194            | <27        | 4.6        | <1       | <1       | <89        | 3.3        | <1.6        | 28            | < 500        |
| KS23195            | <47        | 6.3        | 2        | <1       | < 160      | 7.7        | <2.7        | 27            | <1500        |
| KS23429            | 27         | 5.7        | <1       | 1        | <20        | 3.0        | 1.1         | 8             | < 500        |
| KS25839            | <10        | 2.0        | <1       | <1       | <20        | 2.1        | 0.8         | <5            | < 500        |
| KS27232            | 16         | 3.9        | <1       | <1       | <20        | 3.9        | 1.9         | <5            | < 500        |
| KS27233            | <10        | 2.3        | <1       | <1       | <20        | 5.1        | 1.6         | 6             | < 500        |
| KS27234            | <10        | 2.5        | <1       | <1       | <20        | 5.1        | 1.9         | <5            | < 500        |
| KS27235            | 12         | 2.1        | <1       | <1       | <20        | 2.0        | 0.6         | <5            | < 500        |
| KS27236            | <33        | 3.8        | <1       | <1       | <110       | 7.4        | <1.9        | 17            | <1100        |
| KS27237            | <83        | 0.7        | <4       | <3       | <330       | < 5.8      | < 5.6       | 110           | <4200        |
| KS27501            | <10        | 2.7        | <1       | <1       | <41        | 1.6        | 1.9         | 20            | < 500        |
| KS27502            | <33        | 2.6        | 2        | <1       | < 140      | 5.2        | <2.2        | 52            | <1700        |
| KS27503            | <10        | 7.4        | <1       | 1        | <20        | 5.0        | 2.6         | <5            | < 500        |
| KS27504            | <10        | 2.5        | <1       | <1       | <51        | 6.3        | 1.5         | 13            | <500         |
| KS27505            | <45        | 17.0       | <1       | <1       | <150       | 6.6        | <2.6        | 31            | 1900         |
| KS27506            | < 10       | 7.0        | 1        | <1       | <20        | 6.9        | 2.0         | 7             | <500         |
| KS27507            | 15         | 5.1        | <1       | <1       | <20        | 7.1        | 2.0         | 5             | <500         |
| KS27508            | <10        | 2.4        | <1       | <1       | <20        | 7.1        | 2.0         | 5             | <500         |
| KS27509            | <40        | 1.4        | <1       | <1       | <160       | 3.4        | <2.7        | 46            | <1900        |
| KS27510<br>KS27511 | <10        | 2.3        | 5        | 1        | <20        | 13.0       | 5.2         | <5            | <500         |
| KS27511<br>KS27512 | <10<br><10 | 2.5        | <1       | <1       | <53        | 5.0        | < 0.5       | 12            | <500         |
| KS27512<br>KS27513 | 36         | 3.8        | <1       | <1       | <20        | 5.2        | 4.7         | <5            | <500         |
| KS27515<br>KS27515 | <10        | 3.5        | <1       | <1       | <42        | 5.3        | 1.2         | 8             | <500         |
| KS27517            | <10        | 4.2<br>2.6 | <1       | <1       | <20        | 4.5        | 2.2         | <5            | <500         |
| KS27517<br>KS27518 | <10        | 3.4        | <1<br><1 | <1       | <20        | 3.4        | 1.6         | 6             | <500         |
| KS27519            | <10        | 0.5        | <1       | <1<br><1 | <70        | 3.4        | 1.1         | 17            | <500         |
| KS27520            | <10        | 3.4        | <1       | <1       | <20<br><20 | 2.4<br>3.5 | 1.2<br>1.7  | <5            | <500         |
| KS27521            | <10        | 6.0        | 1        | 1        | <20<br><20 | 5.5        |             | <5            | <500         |
| KS27522            | 23         | 3.2        | <1       | <1       | < 76       | 5.3<br>5.4 | 2.1<br><1.3 | <5<br>23      | <500<br><500 |
| KS27523            | 34         | 3.5        | <1       | <1       | <44        | 13.0       | 2.0         | 23<br>8       | <500         |
| KS27524            | <10        | 3.6        | <1       | <1       | <20        | 5.4        | 2.6         | <5            | <500         |
| KS27525            | <10        | 3.8        | 1        | <1       | <20        | 4.7        | 2.7         | <5            | <500         |
| KS27526            | <10        | 3.7        | 1        | <1       | <20<br><20 | 5.1        | 2.6         | <5            | <500         |
| KS27527            | <10        | 4.7        | 1        | <1       | <20        | 7.5        | 2.8         | <5            | <500         |
| KS27528            | <10        | 4.1        | 1        | <1       | <20        | 5.3        | 2.3         | <5            | <500         |
| KS27529            | 11         | 3.3        | i        | <1       | <20        | 4.8        | 2.5         | <5            | <500         |
| KS27530            | <10        | 4.5        | 1        | <1       | <20        | 6.6        | 2.3         | 6             | <500         |
| KS27531            | <10        | 8.1        | 1        | <1       | <20        | 5.0        | 2.3         | <5            | < <b>500</b> |
| KS27532            | 29         | 3.9        | 1        | <1       | <20        | 4.1        | 2.8         | <b>&lt;</b> 5 | <500         |
| KS27533            | <10        | 2.9        | <1       | <1       | <20        | 4.1        | 3.0         | <5            | <500         |
| KS27534            | 21         | 5.6        | <1       | 2        | <20        | 3.0        | 1.1         | 7             | <500         |
| KS27535            | <10        | 4.6        | <1       | <1       | <69        | 4.2        | 1.4         | 17            | <500         |
| KS27537            | <10        | 3.6        | <1       | <1       | <71        | 4.8        | 1.2         | 20            | <500         |
| KS27538            | <10        | 10.0       | <1       | <1       | <54        | 9.3        | 3.7         | 11            | <500         |
| KS27539            | <21        | 2.7        | <1       | <1       | <75        | 3.8        | 1.6         | 17            | <1100        |
|                    |            |            |          |          |            |            |             |               |              |

Note - The analytical method for all analyses is by instrument neutron activation analysis.